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Abstract 

Background With the global population aging, age-related eye diseases (AREDs) such as senile cataract (SC), age-
related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR) are becoming increasingly signifi-
cant public health concerns. The rising prevalence of AREDs underscores the urgent need for effective prevention 
and treatment strategies. This study aimed to explore the causal relationships between circulating micronutrients 
(CMs) and AREDs.

Methods A bidirectional two-sample Mendelian randomization (MR) analysis was conducted using genetic variants 
as instrumental variables to assess the effects of fifteen CMs (vitamin A, vitamin B6, vitamin B12, vitamin C, vitamin D, 
vitamin E, folate, carotene, copper, calcium, iron, magnesium, potassium, selenium, zinc) on AREDs. Data were sourced 
from large-scale genome-wide association studies (GWAS). The primary analytical method employed was inverse-
variance weighted (IVW), supplemented by sensitivity analyses to confirm the robustness of the results.

Results The MR analysis revealed significant protective effects of selenium against SC (OR = 0.961, 95% CI = 0.932–
0.991, P = 0.012) and DR (OR = 0.927, 95% CI = 0.870–0.987, P = 0.019). Furthermore, higher genetically predicted 
magnesium levels were associated with a reduced risk of AMD (OR = 0.679, 95% CI = 0.515–0.895, P = 0.006). However, 
no significant causal relationships were observed between the other CMs and glaucoma or other AREDs.

Conclusions These findings provided valuable insights into the complex interplay between CMs and AREDs, offering 
potential pathways for developing targeted nutritional interventions and public health strategies to mitigate the risk 
of these debilitating conditions.
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Introduction
According to estimates from the Global Burden of Dis-
ease Study, in 2020, approximately 295 million people 
worldwide will suffer from moderate to severe visual 
impairment [1]. With an aging global population, age-
related eye diseases (AREDs), mainly including senile 
cataract (SC), age-related macular degeneration (AMD), 
glaucoma, and diabetic retinopathy (DR), are major pub-
lic health challenges [2, 3]. These diseases can lead to 
severe visual impairment and blindness, seriously affect-
ing the quality of life [3]. As the global population ages, 
the prevalence of AREDs is expected to increase, high-
lighting the urgent need for effective prevention and 
treatment strategies [4]. Therefore, it is very important 
to identify risk factors for AREDs and develop targeted 
interventions.

The pathogenesis of AREDs is intrinsically linked to the 
aging process, which is characterized by oxidative dam-
age and chronic low-grade inflammation within ocular 
tissues [4–7]. Emerging research highlights the signifi-
cant role of micronutrients, owing to their antioxidative 
and anti-inflammatory properties, in maintaining ocular 
health [8–11]. For example, a population-based epide-
miological study has demonstrated that elevated serum 
levels of vitamin A are associated with a reduced risk of 
diabetic retinopathy [10]. Iron accumulation in the retina, 
a hallmark of aging, may contribute to the development 
of retinal disorders such as AMD [12]. Moreover, insuf-
ficient dietary calcium intake has been strongly associ-
ated with an increased risk of AMD [13]. The formulation 
used in the ARED Study, which includes vitamins C, E, 
β-carotene, zinc, and copper, has been shown to reduce 
the risk of progression to late-stage AMD by 25% over 
five years [14]. In addition, adequate dietary intake of cal-
cium, potassium, and magnesium may confer protective 
benefits against glaucoma, offering a basis for the devel-
opment of targeted preventive strategies [15]. Further-
more, evidence from systematic reviews indicates that 
supplementation with B-group vitamins may have a ben-
eficial effect on reducing cataract incidence [8]. Observa-
tional studies suggest that individuals who consume diets 
rich in antioxidant vitamins (such as carotenoids, vita-
mins C and E) or essential minerals (including selenium 
and zinc) are less likely to develop AREDs [6, 8, 11, 16]. 
However, these studies are often confounded by multiple 
factors, including reverse causality, which complicates 
the establishment of definitive causal relationships.

Mendelian randomization (MR) provides a robust 
methodological approach to infer causality by leveraging 
genetic variants as instrumental variables (IVs) [17]. This 
approach mitigates confounding and reverse causation, as 
genetic variants are randomly assigned at conception and 
remain fixed throughout life [18]. Indeed, recent studies 

have shown that MR can provide novel and robust evi-
dence for understanding the causal relationship between 
nutrients and certain diseases, which would be challeng-
ing to establish with traditional observational methods 
[19–21]. Thus, MR can offer more reliable insights into 
the causal effects of micronutrients on AREDs.

In this study, we aimed to investigate the causal rela-
tionship between fifteen circulating micronutrients 
(CMs) (vitamin A, vitamin B6, vitamin B12, vitamin C, 
vitamin D, vitamin E, folate, carotene, copper, calcium, 
iron, magnesium, potassium, selenium, zinc) and AREDs 
using a large-scale genome-wide association study 
(GWAS) and a bidirectional two-sample MR approach. 
Our findings emphasized the importance of nutrition 
for eye health and further deepened our understanding 
of the pathogenesis of AREDS, thereby guiding the devel-
opment of targeted nutritional recommendations and 
interventions.

Methods
Study design and data sources
This study utilized the bidirectional two-sample MR to 
investigate the causal effects of various CM on AREDs, 
specifically SC, glaucoma, AMD, and DR. Single nucle-
otide polymorphisms (SNPs) were defined as IVs. The 
Mendelian randomization study is based on three core 
assumptions: (1) IVs are strongly associated with the 
exposure; (2) IVs are independent of confounding factors; 
and (3) IVs affect the outcome exclusively through the 
exposure [17, 18]. The study design is illustrated in Fig. 1.

The SNP data associated with CMs levels were 
obtained from the GWAS database, with the fifteen CMs 
and their respective identifiers detailed in Supplemen-
tary Table S1. The outcome data for AREDs were derived 
from the FinnGen consortium, comprising 73,410 cases 
and 3,742,663 controls for SC, 23,483 cases and 430,250 
controls for glaucoma, 11,023 cases and 419,198 controls 
for AMD, and 12,681 cases and 51,410 controls for DR. 
Additional details are available at https:// www. finng en. 
fi/ en/ access_ resul ts. We ensured the use of independent 
and statistically powered samples to minimize bias. All 
data utilized in this study were publicly available sum-
mary statistics from previously published GWAS, obviat-
ing the need for new ethical approvals.

Selection of IVs
SNPs associated with each CM were selected as IVs 
from GWAS. Detailed GWAS information is provided 
in Table  1. The selection criteria included a genome-
wide significance threshold of P < 5 ×  10–6 for initial 
IV identification, ensuring sufficient statistical power, 
as the number of qualified IVs (P < 5 ×  10–8) was not 
enough [22]. Additional criteria for SNP inclusion 

https://www.finngen.fi/en/access_results
https://www.finngen.fi/en/access_results
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were linkage disequilibrium parameters (kb = 10,000, 
r2 < 0.001) and an F-statistic > 10, which were applied to 
mitigate weak instrument bias and ensure the robust-
ness of the IVs [18, 23, 24]. Additionally, in the reverse 
MR analysis, SNPs in the SC, AMD, and DR summary 
data were selected with a threshold of P < 5 ×  10–8  [17, 
25]. The same method was employed to eliminate link-
age disequilibrium and remove weak IVs (kb = 10,000, 
r2 < 0.001, F-statistic > 10) [17, 23].

Statistical analysis
The inverse-variance weighted (IVW) method provides 
a comprehensive estimate of causal effects by weighting 
the inverse variance of the effect size of each SNP [26]. It 
has the highest statistical power among all MR methods. 
Five primary MR analysis methods were employed in this 
study, with the IVW method as the primary approach, 
supplemented by MR-Egger, weighted median, simple 
mode, and weighted mode methods [17]. If heterogeneity 

Fig. 1 Schematic diagram of the study design in this bidirectional MR analysis

Table 1 GWAS information for micronutrients
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was present, the random-effect IVW model was applied; 
otherwise, the fixed-effect IVW model was used [27]. 
This approach was supplemented by visual tools, includ-
ing scatter plots, forest plots, and funnel plots, to illus-
trate the relationship between micronutrients and 
AREDS outcomes [17, 22]. The effect of exposure factors 
on the outcomes was conveyed by odds ratios (OR) and 
corresponding 95% confidence intervals (CI) [17].

Sensitivity analysis
To assess the robustness of the findings, a sensitivity 
analysis was performed, which included the use of MR-
Egger regression to detect pleiotropy and a weighted 
median approach to provide reliable causal estimates if 
some IVs were ineffective [28]. MR-PRESSO analysis was 
utilized to identify horizontal pleiotropy and to detect 
and correct outlier SNPs [29, 30]. Additionally, a leave-
one-out approach was implemented to exclude outlier 
SNPs, preventing a single SNP from unduly influencing 
the causal relationship between exposure and outcome 
[18]. Heterogeneity among SNPs was assessed using the 
Cochrane Q test [25]. Sensitivity analyses confirmed the 
absence of significant horizontal pleiotropy and hetero-
geneity, supporting the causal inferences drawn from the 
primary IVW analysis [17]. For all analyses, results were 
considered significant at the traditional P < 0.05 level [18].

The findings were visually depicted using forest plots, 
funnel plots, scatter plots, and leave-one-out plots. All 
statistical analyses were conducted using the TwoSa-
mpleMR (version 0.6.6) and MRPRESSO (version 1.0) 
packages within R software (version 4.3.2).

Results
Detailed information on the included SNPs
To ensure an adequate number of SNPs for subsequent 
MR analysis, a significance threshold of P < 5 ×  10–6 was 
employed when screening SNPs associated with each CM 
and AREDs. Following the remaining IVs selection crite-
ria (kb = 10,000, r2 < 0.001, F-statistic > 10), a total of 188 
SNPs were identified as IVs for 15 micronutrients (Sup-
plementary Table S1). In the reverse MR analysis of CM 
and AREDs, a more stringent significance threshold of 
P < 5 ×  10–8 was applied, resulting in the selection of 44 
SNPs as IVs for SC (Supplementary Table  S2), 34 SNPs 
for AMD (Supplementary Table S3), and 11 SNPs for DR 
(Supplementary Table S4).

MR results
The causal relationships between CMs and AREDs were 
elucidated through a comprehensive series of analyses. 
The circular heatmap in Fig. 2 presents the MR analysis 
results, with CMs as exposures and AREDs as outcomes, 
using IVW as the primary analytical method. The results, 

including scatter plots, forest plots, funnel plots, and 
leave-one-out plots, are visualized in Fig. 3. Specifically, 
selenium was suggested to be a protective factor against 
SC and DR, while magnesium was indicated as a protec-
tive factor against AMD. However, no associations were 
found between the fifteen CMs and the risk of glaucoma 
(Supplementary Table  S5). Further detailed results are 
provided in the supplementary materials (Supplementary 
Tables S6-8).

Causality between CMs and SC
The causal relationship between CMs and SC was pri-
marily assessed using the IVW method. It was observed 
that genetically predicted circulating selenium levels 
were negatively correlated with SC risk (OR = 0.961, 95% 
CI = 0.932–0.991, P = 0.012) (Fig.  4). Comprehensive 
insights into individual SNPs were provided by the scat-
ter plot, funnel plot, leave-one-out plot, and forest plot 
(Fig.  3A-D). Additionally, MR-PRESSO analysis did not 
identify any outlier SNPs for selenium (P = 0.887). Sen-
sitivity analyses, including MR-Egger regression and the 
weighted median method, confirmed the robustness of 
the results, indicating no significant horizontal pleiot-
ropy (MR Egger intercept = 0.0054, P = 0.484) or hetero-
geneity (P = 0.869) (Supplementary Table S9). The reverse 
MR analysis did not yield significant results (P = 0.757) 
(Fig. 5).

Causality between CMs and AMD
The IVW analysis indicated that higher circulating mag-
nesium levels were negatively associated with AMD 
risk, suggesting a protective effect (OR = 0.679, 95% 
CI = 0.515–0.895, P = 0.006) (Fig.  4). The scatter plot, 
funnel plot, leave-one-out plot, and forest plot provided 
detailed insights into individual SNPs (Fig.  3E-H). MR-
PRESSO analysis revealed no outlier SNPs for magne-
sium (P = 0.983). Sensitivity analyses demonstrated no 
significant heterogeneity (P = 0.977) or horizontal pleiot-
ropy (MR Egger intercept = −0.0167, P = 0.165) (Supple-
mentary Table  S9). No significant results were detected 
in the reverse MR analysis (P = 0.099) (Fig. 5).

Causality between CMs and DR
MR analysis showed a negative correlation between 
genetically predicted circulating selenium levels and 
DR risk (OR = 0.927, 95% CI = 0.870–0.987, P = 0.019) 
(Fig. 4). Detailed insights into individual SNPs were pro-
vided by the scatter plot, funnel plot, leave-one-out plot, 
and forest plot (F  ig.  3I-L). MR-PRESSO analysis did 
not identify any outlier SNPs for selenium (P = 0.798). 
Sensitivity analyses indicated no significant heterogene-
ity (P = 0.643) or horizontal pleiotropy (MR Egger inter-
cept = −0.0053, P = 0.734) (Supplementary Table S9). No 
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significant results were obtained in the reverse MR analy-
sis for selenium and DR (P = 0.100) (Fig. 5).

Discussion
With an aging global population, AREDs are significant 
public health concerns due to their impact on vision 
and quality of life [1–3]. Recent studies have suggested 
that certain CMs may play a role in the prevention or 

progression of these conditions [8, 31, 32]. In this study, 
the potential causal relationships between fifteen CMs 
and AREDs, including SC, glaucoma, AMD, and DR were 
investigated. Significant causal relationships were identi-
fied for selenium and magnesium, with circulating sele-
nium demonstrating a protective effect on SC and DR, 
and circulating magnesium on AMD. Moreover, reverse 
MR analysis showed no reverse causation.

Fig. 2 Circular heatmap of the MR analysis. A The circular heatmap of p-value with micronutrients as the exposure and senile cataract 
as the outcome. B The circular heatmap of p-value with micronutrients as the exposure and glaucoma as the outcome. C The circular heatmap 
of p-value with micronutrients as the exposure and age-related macular degeneration as the outcome. D The circular heatmap of p-value 
with micronutrients as the exposure and diabetic retinopathy as the outcome
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Selenium, an essential micronutrient, is naturally found 
in antioxidant-rich foods and plays a critical role in main-
taining cellular redox balance, mitigating oxidative stress, 
and protecting against DNA damage [33, 34]. After 

absorption in the small intestine, selenium is distributed 
to various tissues throughout the body, where it is incor-
porated into selenoproteins, particularly glutathione per-
oxidase [34, 35]. This enzyme is crucial for neutralizing 

Fig. 3 Visualization of the MR analysis. A-D Visualization of the causal effects of selenium on senile cataract. E-H Visualization of the causal effects 
of magnesium on age-related macular degeneration. I-L Visualization of the causal effects of selenium on diabetic retinopathy. A, E, I, scatter plots; 
B, F, J, forest plots; C, G, K, funnel plots; D, H, L, leave-one-out plot

Fig. 4 Forest plot for the causal effects of micronutrients on age-related eye diseases
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reactive oxygen species (ROS) and preventing oxidative 
damage in tissues, including those in the eye [34, 36].

In the context of ocular health, selenium’s antioxidant 
effects are especially vital in the lens and retina, which 
are highly susceptible to oxidative damage due to both 
intrinsic and extrinsic factors, including aging and envi-
ronmental stressors [36]. Oxidative stress is a key player 
in the pathogenesis of AREDs like SC and DR [9, 36], 
and selenium’s ability to reduce ROS may mitigate these 
conditions. Furthermore, recent evidence suggests that 
selenium’s role extends beyond its general antioxidative 
properties, possibly slowing the progression of chronic 
ocular conditions through its modulation of oxidative 
stress pathways [36]. This reinforces the notion that sele-
nium plays a protective role not only in systemic condi-
tions but also in eye health. Although meta-analyses 
indicate that selenium, as part of antioxidant mixtures, 
reduces cardiovascular risk, studies focused solely on 
selenium have not demonstrated consistent cardiovas-
cular benefits [37, 38]. This highlights that the effects of 
selenium may differ across various health conditions, 
underscoring the complexity of its biological actions. In 
contrast, our genetic evidence provides stronger causal 
inferences regarding selenium’s protective effect against 
SC and DR, offering more robust conclusions than those 
from traditional observational studies.

Magnesium is a mineral that is widely distributed 
throughout the human body, playing a vital role in 
numerous physiological processes [39]. It functions as an 
essential cofactor for γ-glutamyltransferase, an enzyme 
that is crucial for the synthesis of glutathione, a potent 
antioxidant [39]. A cross-sectional study has indicated 
that magnesium intake is associated with lower levels of 
IL-6 [40], which suggests that maintaining magnesium 
homeostasis is crucial for mitigating oxidative stress and 
inflammation. AMD, characterized by degeneration of 
the retinal pigment epithelium and photoreceptor cells, 
is primarily driven by oxidative damage and chronic 
inflammation [4, 6, 31]. Existing evidence suggests that 
adequate magnesium intake may lower the risk of devel-
oping AMD and potentially slow its progression, particu-
larly from early to late stages [31]. This protective effect is 
likely attributable to magnesium’s role in maintaining the 
balance of ROS within retinal tissues, thereby preventing 
the accumulation of oxidative damage that contributes 

to the pathogenesis of AMD [31, 39]. Moreover, die-
tary magnesium intake, especially when combined with 
other beneficial nutrients such as lutein, zeaxanthin, and 
omega-3 fatty acids, has been shown to be inversely asso-
ciated with the risk of AMD [31]. The synergistic effects 
of magnesium with these nutrients imply that a balanced 
diet enriched with magnesium may play a significant role 
in AMD prevention. Our findings, which demonstrate a 
negative correlation between genetically predicted circu-
lating magnesium levels and AMD risk, further support 
the hypothesis that magnesium may contribute to the 
prevention of AMD by attenuating oxidative stress and 
inflammation.

Interestingly, no significant associations were found 
between the fifteen investigated CMs and glaucoma risk. 
This result contrasts with some epidemiological stud-
ies that have suggested the protective effects of nutrients 
like selenium, zinc, and vitamin B6 against glaucoma [11, 
32, 41]. Several factors may explain these discrepancies. 
First, differences in study designs may play a pivotal role. 
Our study employed a two-sample Mendelian randomi-
zation approach, which reduces confounding, whereas 
many of the studies reporting significant associations 
were observational. Observational studies are more sus-
ceptible to biases, including confounding by lifestyle 
factors, which may distort the observed relationships 
between micronutrients and glaucoma risk [42]. Second, 
heterogeneity among glaucoma subtypes may account for 
the varying findings. Glaucoma encompasses multiple 
subtypes with distinct pathophysiological mechanisms 
[11], and as our study did not differentiate between these 
subtypes, potential associations with specific micronu-
trients may have been diluted. Future studies that dis-
tinguish between different glaucoma subtypes could 
provide more precise insights into how various nutrients 
influence distinct forms of glaucoma. Another possible 
explanation for the discrepancies lies in genetic diversity 
across study populations. Our research primarily focused 
on individuals of European descent, while other stud-
ies may have included more genetically diverse cohorts. 
Genetic differences in nutrient metabolism could lead to 
variations in how micronutrients affect glaucoma risk. 
Finally, environmental factors, including diet, socioeco-
nomic status, and access to healthcare, may also contrib-
ute to the observed differences in study outcomes [11, 

Fig. 5 Forest plot for the causal effects of age-related eye diseases on micronutrients
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41, 42]. These factors could interact with micronutrient 
intake and influence glaucoma risk, further complicating 
the interpretation of results.

Although our results did not show significant causal 
relationships between the remaining micronutrients and 
AREDs, their roles in health remain noteworthy. For 
instance, the concentrations of zinc and copper, which 
decrease with age, have been implicated in AMD pro-
gression [43]. Iron deposition in the retina, if increased, 
can lead to photoreceptor cell loss, while its deficiency 
does not cause adverse effects [44]. A meta-analysis sug-
gested that dietary vitamins A, C, E, and carotenoids may 
reduce the risk of SC [8, 45]. However, a randomized 
controlled trial found no significant protective effect of 
vitamin E supplementation compared to placebo [45]. 
Moreover, antioxidant vitamin and mineral supplements 
may slow the progression of late-stage AMD [31]. Several 
cross-sectional studies have shown that vitamin D may 
have a protective effect against AMD in specific popu-
lations [32]. Nevertheless, most of the existing evidence 
comes from small-scale studies with varying methods 
and assessment criteria, which may compromise accu-
racy [20].

While our study benefited from the robust methodo-
logical framework of MR, which mitigated biases such 
as confounding and reverse causation, several limita-
tions must be acknowledged [17, 26]. The generaliz-
ability of our findings was constrained by the genetic 
ancestry of the study population, which was predomi-
nantly of European descent. Future research should aim 
to include diverse populations to validate these findings 
across different genetic backgrounds. Additionally, while 
we accounted for horizontal pleiotropy, the possibility 
of residual pleiotropy cannot be entirely ruled out [30]. 
Potential false-positive results due to multiple hypoth-
esis testing were not corrected by the false discovery rate. 
Further research is required to confirm the protective 
roles of selenium and magnesium in AREDs. Expand-
ing MR studies to include a broader range of micronu-
trients and diverse genetic backgrounds will be crucial 
for advancing our understanding of the pathogenesis of 
micronutrient-related AREDs.

In conclusion, this study advances our understanding 
of the complex relationships between CMs and AREDSs, 
offering promising avenues for preventative strategies 
and public health interventions.
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